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7.1 INTRODUCTION

In this chapter, we concern ourselves with methods of computing a trajectory that
describes the desired motion of a manipulator in multidimensional space. Here,
trajectory refers to a time history of position, velocity, and acceleration for each
degree of freedom.

This problem includes the human-interface problem of how we wish to specify
a trajectory or path through space. In order to make the description of manipulator
motion easy for a human user of a robot system, the user should not be required
to write down complicated functions of Space and time to specify the task. Rather,
we must allow the capability of specifying trajectories with simple descriptions of
the desired motion, and let the system figure out the details. For example, the user
might want to be able to specify nothing more than the desired goal position and
orientation of the end-effector and leave it to the system to decide on the exact
shape of the path to get there, the duration, the velocity profile, and other details.

We also are concerned with how trajectories are represented in the computer
after they have been planned. Finally, there is the problem of actually comput-
ing the trajectory from the internal representation—or generating the trajectory.
Generation occurs at run time; in the most general case, position, velocity, and
acceleration are computed. These trajectories are computed on digital computers,
80 the trajectory points are computed at a certain rate, called the path-update rate.
In typical manipulator systems, this rate lies between 60 and 2000 Hz.

7.2 GENERAL CONSIDERATIONS IN PATH DESCRIPTION AND GENERATION

For the most part, we will consider motions of a manipulator as motions of
the tool frame, {T}, relative to the station frame, {S}. This is the same manner
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202 Chapter? Trajectory generation

in which an eventual user of the system would think, and designing a path
description and generation system in these terms will result in a few important
advantages.

When we specify paths as motions of the tool frame relative to the station
frame, we decouple the motion description from any particular robot, end-effector,
or workpieces. This resulls in a certain modularity and would allow the same path
description to be used with a dilferent manipulator—or with the same manipulitor,
but a different tool size. Frarther, we can specify and plan motions reladive (o a
moving workstation (perhaps a conveyor belt)y by planning motions relative (o the
station frame as always and, at cun time, canong, the detinition of (59 (o be changping
with time.

As shown in Fig. 7.1, the hasie probleay e tommove the manipubator Trom an
initial position to some desived linal posibion that i, we wigh 1o move the fool
frame from its current value, (7). (0 o desoed ok valoe (1,0 Hote that,
in general, this motion involves both a chanpe i orwentation and o choamee i e
position of the tool relative to the station.

Sometimes it is necessary Lo specily the motion o mach more detal than
by simply stating the desired final confipuration. One way (o mchnde mare detnl
in a path description is to give a sequence of desived vin pomts (mlermediaf
points between the initial and final positions). 'I'hus, in completng, (he motion, the
tool frame must pass through a set of intermediale positions and oricntalions s
described by the via points. Each of these via points is actually a [rame that specifies
both the position and orientation of the tool relative to the station. ‘I'he name
path points includes all the via points plus the initial and final points. Remember
that, although we generally use the term “points,” these are actually frames, which
give both position and orientation. Along with these spatiul constraints on the
motion, the user could also wish to specify temporal attributes of the motion. For
example, the time elapsed between via points might be specified in the description
of the path.

Usually, it is desirable for the motion of the manipulator to be smooth. For
our purposes, we will define a smooth function as a function that is continuous and
has a continuous first derivative. Sometimes a continuous second derivative is also

FIGURE 7.1: In executing a trajectory, a manipulator moves from its initial position
to a desired goal position in a smooth manner.
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desirable. Rough, jerky motions tend to cause increased wear on the mechanism and
cause vibrations by exciting resonances in the manipulator. In order to guarantee
smooth paths, we must put some sort of constraints on the spatial and temporal
qualities of the path between the via points.

At this point, there are many choices that may be made and, consequently,
a great variety in the ways that paths might be specified and planned. Any
smooth functions of time that pass through the via points could be used to
specify the exact path shape. In this chapter, we will discuss a couple of sim-
ple choices for these functions. Other approaches can be found in[1, 2] and
[13-16].

7.3 JOINT-SPACE SCHEMES

In this section, we consider methods of path generation in which the path shapes (in
space and in time) are described in terms of functions of joint angles.

Each path point is usually specified in terms of a desired position and ori-
entation of the tool frame, (T}, relative to the station frame, {S}. Each of these
via points is “converted” into a set of desired joint angles by application of the
inverse kinematics. Then a smooth function is found for each of the n joints that
pass through the via points and end at the goal point. The time required for each
segment is the same for each joint so that all joints will reach the via point at the
same time, thus resulting in the desired Cartesian position of {T'} at each via point.
Other than specifying the same duration for each joint, the determination of the
desired joint angle function for a particular joint does not depend on the functions
for the other joints.

Hence, joint-space schemes achieve the desired position and orientation at the
via points. In between via points, the shape of the path, although rather simple in joint
space, is complex if described in Cartesian space. Joint-space schemes are usually the
easiest to compute, and, because we make no continuous correspondence between
joint space and Cartesian space, there is essentially no problem with singularities of
the mechanism.

Cubic polynomials

Consider the problem of moving the tool from its initial position to a goal position
in a certain amount of time. Inverse kinematics allow the set of joint angles that
correspond to the goal position and orientation to be calculated. The initial position
of the manipulator is also known in the form of a set of joint angles. What is required
is a function for each joint whose value at #; is the initial position of the joint and
whose value at t; is the desired goal position of that joint. As shown in Fig. 7.2,
there are many smooth functions, 8 (), that might be used to interpolate the joint
value.

In making a single smooth motion, at least four constraints on 6(¢) are evident.
Two constraints on the function’s value come from the selection of initial and

final values:
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FIGURE 7.2: Sceveral possible path shapes for a single joint.

An additional two constraints arc that the function be continuous in velocity, which
in this case means that the initial and final velocity are zero:

0(0) = 0,
0(t7) = 0. (7.2)

These four constraints can be satisfied by a polynomial of at least third degree.
(A cubic polynomial has four coefficients, so it can be made to satisfy the four
constraints given by (7.1) and (7.2).) These constraints uniquely specify a particular
cubic. A cubic has the form

0(t) = ag + art + ayr* + a5t°, (7.3)
$O the.j oint velocity and acceleration along this path are clearly
6(t) = a; +2a,t + 3agt?,
0(t) = 2a, + 6ast. (7-4)

Combining (7.3) and (7.4) with the four desired constraints yields four equations in
four unknowns:

90 = (10,
2
Bf =day +ﬂ1tf +02tf +a3t_)3;-r
0= ay, (75)

2
Solving these equations for the a;, we obtain

tg = 00,
= O,
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3
a; = ;}*(Gf - 90), (7.6)

2
a; = _;?(gf "'00)
f
Using (7.6), we can calculate the cubic polynomial that connects any initial joint-

angle position with any desired final position. This solution is for the case when the
joint starts and finishes at zero velocity.

EXAMPLE 7.1

A single-link robot with a rotary joint is motionless at § = 15 degrees. It is desired
to move the joint in a smooth manner to § = 75 degrees in 3 seconds. Find the
coefficients of a cubic that accomplishes this motion and brings the manipulator to
rest at the goal. Plot the position, velocity, and acceleration of the joint as a function
of time.

Plugging into (7.6), we find that

ag = 150,

a = 0.0,

a; = 20.0, » 7.7
ay = —4.44. |

Using (7.3) and (7.4), we obtain
8(r) = 15.0 4 20.0¢% — 4.4413,
6(t) = 40.0t —13.33:2, (7.8)
6(r) = 40.0 — 26.66¢.

Figure 7.3 shows the position, velocity, and acceleration functions for this motion
sampled at 40 Hz. Note that the velocity profile for any cubic function is a parabola
and that the acceleration profile is linear.

Cubic polynomials for a path with via points

So far, we have considered motions described by a desired duration and a final goal
point. In general, we wish to allow paths to be specified that include intermediate
via points, If the manipulator is to come to rest at each via point, then we can use
the cubic solution of Section 7.3.

Usually, we wish to be able to pass through a via point without stopping, and
so we need to generalize the way in which we fit cubics to the path constraints.

As in the case of a single goal point, each via point is usually specified in
terms of a desired position and orientation of the tool frame relative to the station
frame. Each of these via points is “converted” into a set of desired joint angles by
application of the inverse kinematics. We then consider the problem of computing
cubics that connect the via-point values for each joint together in a smooth way.
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FIGURE 7.3: Position, velocity, and acceleration profiles for a single cubic segment
that starts and ends at rest.

If desired velocities of the joints at the via points are known, then we can
construct cubic polynomials as before; now, however, the velocity constraints at each
end are not zero, but rather, some known velocity. The constraints of (7.3) become

6(0) =0,



only limited axis movement. The addition of a wrist at the end of
the robot’s arm extends the mobility of the robotic system. The
addition of the wrist also increases the dimensions of the work
envelope.

Figure 2-6 illustrates the movement and the axes of a wrist.
With the majority of wrists in use today, an additional two or three
axes are added to the robot’s mobility. Figure 2-6 shows a wrist
that develops three additional axes of movement: the yaw axis, the
pitch axis, and the roll axis.

The yaw axis describes the wrist’s angular movement from the
left side to the right side. This motion can range from a 90° move-
ment to a 270° movement, depending on the design of the wrist,

The pitch axis describes the wrist’s rotational movement up
and down. The angular motion of the pitch can range from merely
a few degrees of motion to 270°, depending on the application of the
wrist. it

The roll axis describes the rotation around the end of the wrist.
The roll axis can provide rotation up to 360°. With an end effector
connected to the roll axis, a full 360° of rotation can be achieved.

The addition of these extra axes allows the robotic system to
be very flexible. The degrees of rotation that the wrist provides are
variable. For example, the yaw can have 270° of travel, the pitch
can allow 90° to 110° of travel, and the roll, as stated earlier, can
add 360° of rotation. Or a wrist can develop two rolls and no pitch.
But however the wrist axes are designed, the addition of the wrist
to the robot’s arm allows the end effector to reach into areas that
could not be reached by robots using only one of the four coordinate
systems for the arm. The flexibility of the system is thus increased
with the different wrist designs used in the robotic operation.

| Pitch ‘_)alloll

Fl‘gl.g'ro' 2—6 Wrist Axis Motions
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Gripper designs must imeer i, demands of the various tasks
that the ;{ripp«)m maust ;Jvr.?l.«::';, Giler o h.,l(lmg different-shaped
parts. Forinstance, the Lripper i ,,.! 4 bee designed ) hold the part
without causing damage to the par

fingers that will hold the part 1n position as the part ts moved from
one location to another. Finally, the gripper should be flexible enough

to grasp a family of different parts.

- Grippers ¢an. badesxgned to grasp a part on the inside diameter
of the part or on the outside diameter of the part. The gripper should
be able to hold the part securely as the manipulator moves into
position. The gripper must make contact with the part in scveral
different places. The gr:pper must alsosupply enough gripping force
to the part to overcome the effects of gravity on the part.

In the deaign of the gripper, additional w: eight must be ac-
. counted for bec:ause ef the gravitational pull of the earth and the

“acceleration of the mampuidéor These two factors may mean tha

the weight of the pj_';.__’_.},'; 18 three times 1ts normal wexgnt Other varl-
ablesthat mus{:"’ aken into account by the designer are the center

”.-c;f’ zhe part t,g ped how far the gnppmg point is {rom theA

Aldse, !_hf: gripper rmust have
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center of gravity of the part, the size of the pads that will grip the
part, and the weight of the part to be lifted by the gripper.

Mechanical grippers, which are the type used most often in
industrial applications, are driven by either pneumatic actuators
or gearing systems. The mechanical gripper is used to lift various
sizes and weights of parts. .

In many applications, a mechanical gripper will not provide
the proper grasping method for the part. In these cases, a vacuum

gripper can be used to hold the part in position while the part is
transferred from one location to another. The vacuum gripper has

rubber cups that hold the part and a vacuum, or negative-pressure,
system. The suction created by the vacuum holds the part in position

while the manipulator is in motion.
The magnetic gripper is used to pick up parts made of ferrous

metals. When the magnetic field of the gripper comes into contact
with the ferrous metal part, it induces a magnetic field of opposite
polarity into the part. Thus, the part and the gripper attract each

other, allowing the part to be lifted.
End-of-arm tooling is a tool connected to the end effector flange

~of the manipulator. These tools allow the manipulator to perform
S jijtasks such ag arc weldmg, spot weldmg, drilling, routing, deburring,
r~*,‘."'.¢and seahng Py :




X . o= wwnsuins apove the door in Figure a. The opening and closing mechanism is
shown in Figure b. Let's calculate its degree of freedom.
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Transom mechanism
n=4(link 1,3,3 and frame 4),1 =4 (at A, B,C, D), h=0

F=3(4-1)-2x4-1%x0=1

Mote: D and E function as a same prismatic pair, so they only count as one lower pair.

Ixample 2
/ Calculate the degrees of freedom of the mechanisms shown in Figure b. Figure a is an
application of the mechanism.

o S P Tt L S ’ ,



Dump truck

n=d4, =4 (@A, B C D). h=0

F=3(4-1)-2x4~-1x0=1

ixample 3

Caleulate the degrees of freedom of the mechanisms shown in Figure
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Degrees of freedom calculation
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4‘,mm8f w
e for

I =3(n-1)-21-h

Here,np =4, n=4, =4 and h =0,

F=3(4-1)-2(4) = |

Le., one input to any one link will result in
definite motion of all the links.

(ii)
¥ = 3(n-1)-21-h
Here,n=5,n=5,1=5%and h=0.
F=3(5-1)2(5)=2 ‘
l.e., two inpuls to any two links are
required to yield definite motions in all the
links.

(iii)

rd

IF =3(n-1)-21-h

Here,na=4,13=2, n=6,1=7andh = 0.

F=3(6-1)-2(7) = |

. le., onc inpglt to any one link will result in
i definitc motion of all the links.
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Necessary Storage tank in pneumatic actuator

A compressed air tank or air receiver, the primary function of an air reservoir is to act as
temporary storage to accommodate peak demands of compressed air. By being able to to
handle any sudden or unusually heavy demands in excess capacity r, air reservoirs can act
as a buffer between your system and any fluctuation in  pressure.
Air reservoirs can also serve to dampen pulsations from discharge lines of your
compressed air system, resulting in steadier pressure. They can also help prevent frequent
loading and unloading of compressed air systems, as well as precipitating any moisture or
oil carryover within any compressed air generated.

Compressors have a tank connected to store the air before it’s released into the pneumatic
track. Buffer tanks are secondary storage units for the compressed air that came from the
compressor. They are storing the high-PSI (pounds per square inch) compressed air for the
pneumatic actuators. These tanks help in preventing irregular airflow surges in the actuators,
allowing the compressor cycle to maximise its shutoff timing. They also allow the compressor to
be in the exact distance from the actuators in projects.

Trajectory planning

Trajectory planning consists in finding a time series of successive joint angles that allows
moving a robot from a starting configuration towards a goal configuration, in order to achieve a
task, such as grabbing an object from a conveyor belt and placing it on a shelf.

>

Acceleration analysis in robotics

Acceleration: (Robotic Mechanisms) The time rate of change of velocity of a body. It is
always produced by force acting on a body. Acceleration is measured as feet per second per
second (ft/s2) or meters per second per second (m/s2). These three concepts are important for

understanding kinematics and the variables and formulas used to solve different kinematic
problems



Laplace transform is important in control system

pears in the description of

, - .ta =i
The Laplace transform is extensively used in control thegry e[r)ators it ol fiplication
linear time-invariant systems, where it changes convolution op

operators and allows one to de.ne the transfer function of a system.

1at can simplify the analysis and

| equations that describe the dyna
ncy response of a system

design of control

Laplace transform is a mathematical tool tI ¢ behavior of 2

systems. It can convert complex differentia
system into simpler algebraic equations that describe the freque

Mathematical modeling of a physical system

Mathematical modeling and representation of a physical system. A physical system is a system
in which physical objects are connected to perform an objective. We cannot represent any
physical system in its real form. Therefore, we have to make assumptions for analysis and
synthesis of systems.

A mathematical model is the mathematical representation of the physical
system which is made using the appropriate governing laws of that system. These
governing laws are Newton's laws of motion

the effects of integral and derivative control actions on system performance

An integral control (@@ @) will have the effect of eliminating the steady-state error
for a constant or step input, but it may make the transient response slower. A

derivative control (@@@¢) will have the effect of increasing the stability of the
system, reducing the overshoot, and improving the transient response



PROBLEMS

Robot Anatomy

§1  Usngthe notatien scheme for defining mampulotor configu ations Sechon8 1 2), dewr dengrams (mmla to
Figwe § 1) of the followang rabots (#) TRT, (1) VVR, (¢) VROT.

Solution

{a} TRT b} V¥R {c) VROT

§2  Usngthe notation scheme for defirang masupulatos configwations (Sechon 8.1 1), drew deegrems (smules to
Figee 8 1) of the followng sobots () TRL, {8 CLO. (9 LVL.

Solution

|a} TRL [b) OLO le]ive

»

83 Usagthe notation schieme for defirang mamepulatos configurations (Section 8.1.2), drew thagrans (amales to
Figze § 1) of the followng 1obots (6 TRTR (O TVRTR (9 RR T

Sotution
P
A {
T Am R ,/‘\%T v
E_T__
{a) TRT:R (b) TVR TR (cIRR.T

84  Usangthe iobot configuation notation scheme chscussed i Section 8 1, wnte the cenfiguration notshons for
some of the sobots 11 yous laborstary ot ghop

Selution Answer depends on 10botsin the laboratory or dhop of mterest

835 Desarbe the dfferencesin onentation capelalities end werk volumes for a TR and @ BT wrest assembly Use
sketches s needed

Solution
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Solved problems:

1. A single degree of freedom spring-mass-damper system has the following data: spring stiffness 20
kN/m; mass 0.05 kg; damping coefficient 20 N-s/m. Determine

(a) undamped natural frequency in rad/s and Hz

(b) damping factor

(¢) damped natural frequency n rad/s and Hz.
If the above system is given an initial displacement of 0.1 m, trace the phasor of the system for three
cycles of free vibration.

Solution:
3
o, :\/z = JZOX]O =632.46 rad/s
m 0.05
632.46
f=2n o —100.66 Hz
27 27

c 20
¢= = =0.32
2Nkm 2420%10° x0.05

w, =w,\1-¢* =632.46y/1-0.32% =600rad/s

=2 800 _ o5 37Hz
2, 27

Y(2) = Ae 6" = (), 17032032460

Ja

2. A second-order system has a damping factor of 0.3 (underdamped system) and an un-damped
natural frequency of 10 rad/s. Keeping the damping factor the same, if the un-damped natural
frequency is changed to 20 rad/s, locate the new poles of the system? What can you say about the
response of the new system?

Solution:

Given, w,, =10 rad/s and w,, = 20 rad/s

w, =, \J1-¢? =10J1-0.3? =9.54rad/s

@, =@, J1-¢* =20y/1-0.3? =19.08rad/s

Pp=-6w, * jo, =-3% j9.54




Pra = =G0, t jo, =-61 j19.08

0.3
tan 8 = ° 2 “iras
J1-¢* A1-03
'(I)
2 N | 19.08 ¢ hlane
|
|i I.Q ----- 9.54
BN
- -
4
E VA
|
_____ —|-19.08

8.9.1. Second-order Time Response Specifications with Impulse input
(a) Over damped case ({>1)
General equation

y+2cwny+w:y=%-a<r)

Laplacian of the output

Kx, 1
Y(s)= '( 2 2)
m \ s"+2w,s+w,

_ Kx, ] B 1
amo O -1 |(s+¢o, o -1) (s+Co, + 0, -1

Time-domain response

y(t): _.__Kxi_ e
: ma,\¢* -1

(b) Critically damped case ((=1)
General equation

¢! sinh (a),, - —1) t

Laplacian of the output

Time-domain response

(¢) Under damped case ({<1)

(8.76)

(8.77)

(8.78)

(8.79)

(8.80)

(8.81)
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Table 2.3 Comparison of fundamental robot arms [Courtesy: Fuller (1999)]

Configuration

Advantages

Disadvantages

- Easy to visualize
- Rigid structure

Cartesian (3 linear axes)
x: base travel

y: height

2 reach

- Easy offline programming
- Easy mechanical stops

- Reach only front and back
- Requires large floor space
- Axes are hard to seal

- Expensive

Cylindrical (1 rotation and
2 linear axes)

0 : base rotation

v height

z:reach

- Rigid y, z-axes

- Can reach all around

- G-axis easy to seal

- Cannot reach above itself

- Less rigid 6-axis

- y, z-axes hard to seal

- Won't reach around obstacles
- Horizontal motion is circular

Spherical (2 rotating and
| linear axes)

0: base rotation

¢: elevation angle

Z:reach

obstacles

- Can reach all around
- Can reach above or below

- Cannot reach above itself
- Short vertical reach

- Large work volume

Articulated (3 rotating
axes)

0: base rotation

¢: elevation angle

W reach angle

objects

least floor space

- Can reach above or below

- Largest work volume for

- Difficult to program oft-line

- Two or more ways to reach
a point

- Most complex robot

1>a

Supporting
columns

Fig. 2.15 A Gantry robot [Courtesy: Koivo (1989)]

2.2.2 Actuation Systems

Robots are driven by either electric power or
(luid power. The latter category can be further
subdivided into pneumatic and hydraulic.
Today. the most common drive method is
electric with various types of motors, e.g.,
stepper, dc servo, and brushless ac servo.
Pneumatic robots are used in light assembly
or packing work but are not usually suitable
for heavy-duty tasks or where speed control
is necessary. On the other hand, hydraulic

Fig. 2,16 ASCARA arm
[Courtesy: Fuller (1999)]
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[Courtesy: www.festo.com]

[Courtesy: www.meritindustriesltd.com]

(a) Hydraulic cylinder (b) Pneumatic cylinder

Fig. 3.25 Commercially available cylinders

3.3 PNEUMATIC ACTUATORS

Pneumatic actuators are the other type of fluid power devices for industrial robots.
Pneumatic actuators utilize compressed air for the actuation of cylinders as shown
in Fig. 3.25 (b), and are widely used for typical opening and closing motions of
jaws in the gripper of a robot, as shown in Fig, 2.4 (a), or for the actuation of simple
robot arms used in applications where continuous motion control is not of concern.
A pneumatic actuator comprising of a pneumatic cylinder and other accessories are
shown in Fig. 3.26, whereas the specifications of a cylinder are given in Table 3.9.
Typical advantages and disadvantages of pneumatic actuators are as follows:

Advantages

It is the cheapest form of all actuators. Components are readily available and
compressed air is normally an already existing facility in factories.

Compressed air can be stored and conveyed easily over long distances.
,Compressed air is clean, explosion-proof and insensitive to temperature
fluctuations, thus, lending itself to many applications.

They have few moving parts making them inherently reliable and reducing
maintenance costs. '

Since pneumatic systems are common throughout industry, therefore, relevant
personnel are often very familiar with the technology.

Very quick in action and response time, thus, allowing fast work cycles.

No mechanical transmission is usually required.

Pneumatics can be intrinsically safe in explosive areas as no electrical control is
required. Also in wet conditions there is no danger of electrocution.

The systems are usually compact.

Control is simple, e.g., mechanical stops are often used.

Individual components can be easily interconnected.

Disadvantages

Since air is compressible, precise control of speed and position is not easily
obtainable unless more complex electromechanical devices are incorporated
into the system, This means that only a limited sequence of operation at a fixed
speed is often available.
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at power levels under about 1.5 kW unless there is danger due to possible ignition
of explosive materials. At ranges between 1-5 kW, the availability of a robot in
a particular coordinate system with specific characteristics or at a lower cost
may determine the decision. Reliability of all types of robots made by reputable
manufacturers is sufficiently good that this is not a major determining factor.

m Selection of a Motor

Simple mathematical calculations are needed to determine the torque, velocity, and
power characteristics of an actuator or a motor for different applications. Torque is
defined in terms of force times distance or moment. A force, f, at distance, a, from the
center of rotation has a moment or torque, 7, i.e., T = fa. In general terms, power, P,
transmitted in a drive shaft is determined by the torque, 7, multiplied by the angular
velocity, w. Power P is expressed as, P =7 w. For an example, a calculation can tell
one what kilowatt or horsepower is required in a motor used to drive a 2-meter robot
arm lifting a 25 kg mass at 10 rpm. If the mass of the arm is assumed zero then, P =
(25 x9.81 x2) x (27 x 10/60) = 0.513 kW. The use of simple equations of this type
is often sufficient to make a useful approximation of a needed value. More detailed
calculations can take place using the equations of statics and dynamics that apply.

3.5 GRIPPERS

Grippers are end-effectors, as introduced in Section 2.1.1, which are used to grasp
an object or a tool, e.g., a grinder, and hold it. Tasks required by the grippers are
to hold workpieces and load/unload from/to a machine or conveyer. Grippers can
be mechanical in nature using a combination of mechanisms driven by electric,
hydraulic, or pneumatic powers, as explained in earlier sections. Grippers can be
classified based on the principle of grasping mechanism. For example, grippers can
hold with the help of suction cups, magnets, or by other means. A gripper is then
accordingly referred to as pneumatic gripper, magnetic gripper, etc. Another way to
classify a gripper is based on how it holds an object, i.e., based on grasping the object
on its exterior (external gripper) or interior (internal gripper) surface.

3.5.1 Mechanical Grippers

As shown in Fig. 2.4(a), mechanical grippers have their jaw movements through
pivoting or translational motion using a transmission element, €.g., linkages or gears,
ete. This is illustrated in Fig. 3.27. The gripper can be of single or double type.
While the former has only one gripping device at the robot’s wrist, the latter type has
two. The double grippers can be actuated independently and are especially useful in
machine loading and unloading. As illustrated in Groover et al. (2012), suppose a
particular job calls for a raw part to be loaded from a conveyor onto a machine and
the finished part to be unloaded onto another conveyor. With a single gripper, the
robot would have to unload the finished part before picking up the raw part. This
would consume valuable time in the production cycle because the machine would
remain idle during these handling motions. With a double gripper, the robot can pick
up the part from the incoming conveyor with one of its gripping devices and have
it ready to exchange for the finished part on the machine. When the machine cycle
is completed, the robot can reach in for the finished part with the available grasping
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device, and insert the raw part into the machine with the other grasping device. The
amount of time spent in exchanging the parts or the time to keep the machine idle is
minimized.

A gripper uses its fingers or jaws to hold an object, as illustrated in Fig. 3.28.
The function of a gripper mechanism is to translate some form of power input, be it
electric, hydraulic or pneumatic, into the grasping action of the fingers against the
part. Note that there are two ways a gripper can hold an object, i.e., either by physical
constriction as shown in Fig. 3.28(a) or by friction, as demonstrated in Fig. 3.38(b).
In the former case, contacting surfaces of the fingers are made of approximately
the same shape of the part geometry, while in the latter case the fingers must apply
sufficient force to retain the part against gravity or accelerations. The friction method
of holding a part is less complex and hence less expensive. However, they have to be
designed properly with its surfaces having sufficient coefficient of friction so that the
parts do not slip during motion. Example 3.6 illustrates the situation.

Rotational

Drive @ or Gripper

mission :
system Trans motion

;

: : Pivoting or
Linear Linkages, gears, {ranslational
cams, cables, etc.

Electric, hydraulic,
pneumatic

Fig. 3.27 Motion of a mechanical gripper

DE W EENM Friction-based Gripper &

Consider the weight w of an object to be carried by a parallel-fingered gripper shown

in Fig. 3.28(b). Gripper force can be calculated using the following force balance:
unf=w (3.5a)

where 11 is the coefficient of friction of the object and finger surfaces, whereas n,

f; and w are the number of contacting surfaces, finger forces, and the weight of the

object £0 be held by the gripper. If w = 140 kg, n = 2, and u = 0.2, f is computed
simply as

140 x 9.81
f= _2—><6_2_ =3500 N (3.5b)

Note that the value of 9.81 m/s?is the value of g, i.e., acceleration due to gravity.

Encompassing surface on fingers Flat surface on fingers

v

—

Pressure

A

) N e
Gripper Gripper

(a) Physical or encompassing (b) Friction load

Fig. 3.28 Fingers gripping objects
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1. Revolute Joint, R A revolute joint, also known as a furning pair or a hinge
or a pin joint, permits two paired links to rotate with respect to each other about the
axis of the joint, say, Z, as shown in Fig. 5.1. Hence, a revolute joint imposes five
constraints, i.e., it prohibits one of the links to translate with respect to the other one
along the three perpendicular axes, X, Y, Z, along with the rotation about two axes, X
and Y. This joint has one degree of freedom (DOF).

(a) Geometrical form

Fig. 5.1

AL

(b) Representations

Arevolute joint

2. Prismatic Joint, P A prismatic joint or a sliding pair allows two paired links

to slide with respect to each other along its axis, as shown in Fig. 5.2. It also imposes
five constraints and, hence, has one DOF.

57

(a) Geometrical form

A

b) chresentallons

Fig. 5.2 A prismatic joint

3. Helical Joint, H Asshown
in Fig. 5.3, a helical joint allows
two paired links to rotate about
and translate at the same time
along the axis of the joint. The
translation is, however, not
independent. It is related to the
rotation by the pitch of the screw.
Thus, the helical joint also has

five constraints, and accordingly
one DOF.

P

(a) Geometrical form (b) Representations

Fig. 5.3 A helical joint
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4. Cylindrical Joint, C It permits rotation about, and independent translation

along, the axis of the joint, as shown in Fig. 5.4. Hence, a cylindrical joint imposes
four constraints on the paired links, and has two DOF.

FAL

(a) Geometrical form (b) Representations
Fig. 5.4 Acylindrical joint

5. Spherical Joint, S It allows one of the coupled links to rotate freely in all
possible orientation with respect to the other one about the center of a sphere. No
relative translation is permitted. Hence, it imposes three constraints and has three

o

(a) Geometrical form (b) Representation

2

Fig. 5.5 Aspherical joint

6. Planar Joint, L This three DOF joint allows two translations along the two

independent axes of the plane of contact and one rotation about the axis normal to
the plane, Fig. 5.6.

)

(a) Geometrical form (b) Representation

Fig. 5.6 Aplanar joint
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Table 5.1 Lower pair joints

Name Symbol  Geometric Form and DOF Common
Representations Surface
' Revolute R Fig. 5.1 1 Cylinder
. Prismatic P Fig. 5.2 1 Prism
Helical H Fig.5.3 1 Screw
Cylindrical C Fig. 5.4 2 Cylinder
Sphencal A) Fig. 5.5 3 Sphere
Planar L Fig. 5.6 3 Plane

Table 5.1 summarizes the basic lower pair
joints, where all the joints have surface
contact between the interconnecting links.
Another commonly used lower pair joint in
robotics is the two DOF wuniversal joint. as
shown in Fig. 5.7. This is the combination of
two intersecting revolute joints. Examples of
higher pair joints in robots are gears and cams
with roller followers, where they make line .
contacts. Fig. 5.7 Auniversal joint

5.1.2 Kinematic Chain

A kinematic chain is a series of links
connected by joints. When each and every
link in a kmema_tm chain is c?ox{pled. to at chosed-chain methanissl Syaem; a Hias
most two other links. the chainisreferred 5 1at0r is treated here as an open-chain
to as simple kinematic chain. A simple  gystem. ,
kinematic chain can be either closed or

open. It is closed if each and every link is coupled to two other links as shown in
Fig. 5.8. A kinematic chain is open if it contains exactly two links, namely, the end
ones that are coupled to only one link. A robotic manipulator shown in Fig. 5.9 falls
in this category.

" Mechanism vs. Manipulator

Whereas a mechanism can be open- and

Base, =0

Fig. 5.8 A four-bar mechanism
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11.11 FORCE CONTROL

In the control schemes presented so far, the controlling joint torques were obtained
using only joint or Cartesian trajectories without any reference to what force or
moment the robot exert on its environment. This is important as the robot’s end-
effector has to exert some moment or ni Ay L) 2
force or both, which were defined in T ————
Chapter 9 as wrench, on an object handled Wrencfh Mmeang Gpih momant ang fofoe,
by it. In many tasks, e.g., cleaning a glass, 48 uginecin Saepinr ¥, FOOR CoiRg.
which is more popular in the literature, is
the robot should not exert more than  equivalent to wrench control. :
certain force in order not to break it. In
other instances, where robots and human beings are working together, a robot must
stop when it is touched, i.e., a threshold value of force is crossed to make the
environment safe. In applications where the end-effector has to apply a controlled
force, e.g., on a glass which is cleaned by a robot, the position control schemes
presented in the previous sections will not be appropriate unless the tool at the end-
effector 1s sufficiently compliant, e.g., like a sponge. If the end-effector is rigid like
a scrapping tool then any uncertainty in the position of the glass surface or the
positional error in the end-effector will either cause the glass to break or the scrapper
will not touch the glass at all. In such situations, the force, not the position, should be
specified in order to obtain satisfactory performance by the robot. In fact, the robot
motion can be subdivided into gross and fine motions. While the former is usually
fast and generally should be used for position control, the latter is slow when the end-
effector’s position relative to the environment is accurately adjusted based on force,
which could be either implicit or explicit, based on an external force/torque sensor
fitted at the wrist before the end-effector. Since the force control is generally slow,
nonlinear dynamics of the robot is of little importance.

An approach to maintain an interaction force between a robot and its environment
is by introducing some kind of compliance into the robot. If this compliance is large,
a small position error will cause a small change in interaction force. A special passive
compliance device, e.g., Remote Center Compliance (WR: RCC), can be placed in
the robot’s wrist to control the applied forces onto the environment. Such devices
help in automated assembly, e.g., peg-in-hole or grinding tasks. Passive compliance
devices can be undesirable as it may lead to oscillations if the manipulator moves
very fast. Alternatively, it is possible to introduce compliance by reducing position
feedback gain, which is referred as active compliance. In this case, a small manipulator
displacement will cause a corresponding small variation in the control torques. Unlike
mechanical compliance, as in the case of RCC, such artificial compliance is software-
adjustable depending on the specific task. Controlling end-effector wrenches through
the joint-actuator torques is known as implicit force control. Here, position error
is related to the contact force through a mechanical stiffness or impedance with
adjustable parameters, i.e., mass, damping ratio, and stiffness of the system. A robot
under impedance control is equivalent to an equivalent mass-spring-damper system
with contact force as input. One can, however, use an external force/torque sensor
to measure its output to feedback in the drive control system. Such control can be
referred to as explicit force control.
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where I =1 -1 and = @ — ¢. Subtracting Eq. (11.32) from the linear form of the
dynamic equations given by Eq. (8.67), i.e,, 10 + @ = Yp’, one can also write the
following:

16 +§ = Yp, where p=p’ - p (11.33¢)
Assuming I is invertible, the error dynamics can then be expressed as
¢+ K+ Ke=Ip where=T"Y (11.33d)

Equation (11.33d) is now a linear system which can be expressed in state-space
form, i.e., in the form of X = Ax + Bu, where the state matrix A and state vector x
have the same structures as in Eq. (11.21c), whereas the matrix B and vector u are
given by B = [0 1]"—O and 1 being the zero and identity matrices of compatible
sizes, respectively,—and u = I'p. Based on the concept of Lyapunov’s stability

criterion, one can then obtain paramelrlc adaptive law in the follownpg fo;m (Spong il

g

and Vidyasagar, 2004):

p=-K; T'B'Px
where the matrices P and K are symmetric positive definite matrices corresponding
to the Lyapunov function, v = x'Px + pTK,,p

11.10 CARTESIAN CONTROL

In the control schemes presented above, the desired trajectory was assumed to be time
histories of joint positions, velocities, and accelerations, and the corresponding effort
was joint torques. In a robot, however, it is the robot end-effector which actually
performs the work or interacts with its environment. Hence, it is more natural to specify
the motion of the robot in terms of the position and orientation of the end-effector, its
velocities and accelerations, and/or the corresponding forces and moments acting on
it. Note here that the end-effector motion of a robot is achieved by controlling a set of

joint motions, as also pomted ou[ in Chapter 5, because that is the way the robots are
designed. Hencc the joint motion specifications are used for controlling a robot. In_

case one wishes to specify the. Cartesian motions, along with the forces and moments

acting on the end effector, the controller should have the ability to do the necessary
transformation f1 om the Cartesian space of the end-effector to the joint space so that -

' approprmte signals. are communicated to the joint actuators. For Cartesian control,
the following three approaches can be typically adopted.

11.10.1 Resolved Motion Control

Resolved motion means that the joint motions are combined and resolved into
separately controllable end-effector motion along the three Cartesian axes. Such
control enables a user to specify the direction, speed, and acceleration, if required,

along any arbitrary path of the end-effector. It simplifies the. specification of the ,

sequence of motions for the complmon of a task because a human operator is usually
more. addpted to the Cartesian coordinates than the robot’s joint coordinates. Based

oq what is controlled, resolved motion control is accordingly classified as resolved-

rate or resolve accelerarmn or resolved -force control. Given the position, orientation,
and thelr first two der;vauvcs of the end-effector of a robot, one approach is to use the
mverse kmemducs for position, velocny, and acceleration to obtain the joint position,
velocny, and acceleratlon _respectively, and use one of the joint control approaches
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Thus, the output from an element may be obtained by multiplying the input signal with the
transfer function.

Note : From the transfer function of the individual blocks, the equation of motion of system can be formu-
lated.

26.7 Overall Transfer Function

In the previous article, we have discussed the transfer function of a block. A control system
actually consists of several such blocks which are connected in series. The overall transfer function
of the series is the product of the individual transfer function. Consider a block diagram of any
control system represented by the three blocks as shown in Fig. 26.2.

e ]
0.

i e1 02 E{
>t F(D) > F(D) > FD) |
i

Fig. 26.2. Overall transfer function.

Thus, if F| (D), F, (D), F5 (D) are individual transfer functions of three blocks in series, then
the overall transfer function of the system is given as

e, 6, 6, 6
0 =1 22 %9 = [{(D)x F,(D)x F;(D) = KG(D)
6, 6 6 6
where K = Constant representing the overall amplification or gain, and

G(D) = Some function of the operator D.

Note: The above equation is only true if there is no interaction between the blocks, that is the output from
one block is not affected by its connection to the subsequent blocks.

26.8. Transfer Function for a System with viscous Damped Output

Consider a shaft, which is used to position a load (which may be pulley or gear) as shown in
Fig. 26.3. The movement of the load is resisted by a viscous damping torque.

Load

! Viscous

Shaft damper

Fig. 26.3. Transfer function for a system with viscous damped output.

Let 8; = Input signal to the shaft,

8, = Output signal of the shaft,
g = Stiffness of the shaft,
I = Moment of Inertia of the load, and
T, = Viscous damping torque per unit angular velocity.



Alter some time f,

Twist in the shaft =0;-9,
Torque transmitted to the load =q(8; —6,)
de,
‘e = t
We also know that damping torque = Tyoy =1y dt (g =d8,/ dr)

wed via-elt conveyor
Note : This picture is given as additional mformatlon and is not a direct example of the current chapter.

According to Newton’s Second law, the equation of motion of the system is given by

(d% ) 0
l'm; =40 =0,) =T, —< e (0)
y,
)
d d
» I eo =q9i—q90 —Td &
or L dtz ) dt

Replaci‘ng d/dt by D in above equation, we get
1(D*6,)=q6;-q06,-T,;(D6,)
or 1(D%6,)+T,(DB,)+q 6, =q6;

D%, +L(Do,)+L@,)=2@)
/ / !
29+ (De)+w))6-%m)6 o (i)

where ®, = Natural frequency of the shaft = \/%

Also we know that viscous damping torque per unit angular velocity,
Ty=218w, or T,/I=28&wn,

where € = Damping factor or damping ratio.
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The equation (/) may now be written as

[)29 + 2&(1)” (I)e()) + (mn )2 9() = ((DH )2 9l

or [D? +2E@, D+(®,)°18, =(®,)’8,

[

2
()
Transfer function =—~ = ’ (®,) :
6, D*+2Ew, D+(w,)

1
TP +2ET D+

where o T = Time constant = 1/ ®,

Note: The time constant (7) may also be obtained by dividing the periodic time (z,) of the undamped natural
oscillations of the system by 27 . Mathematically,

( 2%

{ 2n 1 1 oty =—

o i — X = d o,
2 ®, 2n o,

Evample 26.1. The motion of a pointer over a scale is resisted by a viscous damping torque
of magnitude 0.6 N-m at an angular velocity of 1 rad/s. The pointer, of negligible inertia, is
mounted on the end of a relatively flexible shaft of stiffness 1.2 N-m / rad, and this shaft is driven
through a 4 1o 1 reduction gear box. Determine its overall transfer function.

If the input shaft to the gear box is suddenly rotated through 1 completed revolution, determine
the time taken by the pointer to reach a position within 1 percent of its final value.

Sgtutinng. Given:

T,=0.06/1= 0.6 N-ms/rad; : Gear box Pointer
g = 1.2 N-m/rad Uﬁ,- ¥
The control system along with .its - o.. tl

block diagram is shown in Fig 26.4 (a) == tj‘ —,—

and (b) respectively.

L. Overalbiransior ftintetiog

Since the inertia of the pointer is

negligible, therefore the torque generated (a)
by the twisting of the shaft has only to v » o
overcome the damping torque. % B 51 I P »99
Therefore * ' 4 ' - 1+kG(D)
a8 =8,)=T,(d8,/dn b)
‘where ., -9, = Output from the gear box. Fig. 20.4
' ;.r;'n" ; (/e| “’([ 9” =Td(1)9‘,) £ ( d/ldt = D)
oF (q+T,D)8, =q6,
' O ooy § ] |
0 ¢+T,D 1+(T,/¢)D 1+TD et}

Wh?re T = Time copstunt % T,/q=0.6/12=0.5s
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17.2 MECHANICAL SYSTEM BUILDING BLOCKS

M F

isplacement x

Figure 17.4 LExample.

the behaviour that could be expected of the vehicle when driven over a rough
road and hence as a basis for the design of the vehicle suspension. Figure 17.3(c)
shows how this model can be used as part of a larger model to predict how the
driver might feel when driven along a road. The procedure to be adopted for
the analysis of such models is just the same as outlined above for the simple
spring—dashpot-mass model. A free-body diagram is drawn for each mass
in the system, such diagrams showing each mass independently and just the
forces acting on it. Then for each mass the resultant of the forces acting on it
is equated to the product of the mass and the acceleration of the mass.

To illustrate the above, consider the derivation of the differential equation
describing the relationship between the input of the force F and the output
of displacement « for the system shown in Figure 17.4.

The net force applied to the mass is F* minus the resisting forces exerted
by cach of the springs. Since these are ,x and k,x, then

net force = £ — kb — by

Since the net force causes the mass to accelerate, then

2
dx

net force = m -
dt

Hence
- div
m— + (k) + ky)v = F
e
~ The procedure for obtaining the differential equation relating the inputs
and outputs for a mechanical system consisting of a number of components
can be summarised as: : '

1 isolate the various components in the system and draw free-body diagrams
for each;

2 hence, with the forces identified for a component, write the modelling
equation for it; -

3 combine the equations for the various system components to obtain the
system differential equation.

As an illustration, consider the derivation of the differential equation

describing the motion of the mass m; in Figure 17.5(a) when a force F is

applied. Consider the frec-body diagrams (Figure 17.5(b)). I'or mass m,

these are the force £ and the force exerted by the upper spring. The force

exerted by the upper spring is due to its being stretched by (x, — x;) and so

is k,(x; — x,). Thus the net force acting on the mass is

net force = F — ky(x; — x;)
This force will cause the mass to accelerate and so

, dl.\'.;
F = kylay = xy) = my—=
dr
For the free-body diagram for mass m,, the force exerted by the upper
spring is k;(x; — v,) and that by the lower spring is #,(x, — ;). Thus the
net force acting on the mass 1s

net force = ky(x, = x;) = ky(x; — ay)

A
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Second-order
systems

Figure 19.8 Spring—dashpot—
mass system.

time constant is the time taken for a first-order system output to change from
0 to 0.63 of its final steady-state value. In this case this time is about 3 5. We
can check this value, and that the system is first order, by finding the value
at 2, i.e. 6 s. With a first-order system it should be 0.86 of the steady-state
value. In this case it is. The steady-state output is 10 V. Thus the steady-
state gain Gyg is (steady-state output/input) = 10/5 = 2. The differential
equation for a first-order system can be written as

Many second-order systems can be considered to be analogous to esscnu'all_v
just a stretched spring with a mass and some means of providing damping.
Figure 19.8 shows the basis of such a system.

_I\M_

‘ Intput, # Spring=  { Output, x
Mass dashpot-mass
r system

i

Such a system was analysed in Section 17.2.2. The equation describing
.the “relationship between the input of force F and the output of a
displacement x is

dz.t‘- Cdy
dr? dt

m

where m is the mass, ¢ the damping constant and # the spring constant.

The way in which the resulting displacement » will vary with time will
depend on the amount of damping in the system. Thus if the force was
applied as a step input and there was no damping at all then the mass would
freely oscillate on the spring and the oscillations would continue indefinitely,
No damping means ¢ = () and so the dx/ds term is zero. However, damping
will cause the oscillations to die away until a steady displacement of the mass
is obtained. If the damping is high enough there will be no oscillations and
the displacement of the mass will just slowly increase with time and gradually
the mass will move towards its steady displacement position. Figure 19.9
shows the general way that the displacements, for a step input, vary with
time with different degrees of damping.
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Figure 17.5 Mass—spring
system.

Figure 17.6 Rotating a mass
on the end of a shaft

(a) physical situation,

(b) building block model.

",

"y

Force exeried
by upper spring .

é b,
) [ Force exerted
S by upper spring

II['
N "
i

| Force exerted
by lower spring

(1) (b)

This force will cause the mass to accelerate and so

27
A’](.\'z - x,) = A’z(l'.; - .\'7) = Hllg'iz’
i dr

We thus have two simultancous second-order differential equations to
describe the behaviours of the system.

Similar models can be constructed for rotating systems. To evaluate
the relationship between the torque and angular displacement for the
system the procedure to be adopted is to consider just one rotational mass
block, and just the torques acting on that body. When several torques act
on a body simultaneously, their single equivalent resultant can be found
by addition in which the direction of the torques is taken into account.
Thus a system involving a torque being used to rotate a mass on the end
of a shaft (Figure 17.6(a)) can be considered to be represented by the
rotational building blocks shown in Figure 17.6(b). This is a comparable
situation with that analysed above (Figure 17.2) for linear displacements
and yields a similar equation

— Anguln Torsional
resistance

displacement t—__,
|

Forguac Forsional Moment
i resistanee of inertia /

() (b)
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Now consider when we have damping. The motion of the mass is then
described by :
dy dx
mree b gt 4 o= )
di dr
"T'o solve this equation we can try a solution of the form x, = Ae”. This gives
dy, /dr = Ase”and d’x,/de? = As’e”. Thus, substituting these values in the
differential equation gives
mAs’e! + edset + bAe! =0
ms* + s + k=0

Thus v, = 4¢" can only be a solution provided the above equation equals
zero. This equation is called the auxiliary equation. The roots of the
equation can be obtained by factoring or using the formula for the roots of a
quadratic equation. Thus

—c =V = dmk

2m

¢ k ( ‘.Z ) k
= —— * — - s
2m m\ 4mk m

But w? = k/m and so, if we let {2 = ¢*/4mk, we can write the above
equation as

§= o, F w,V gl —_-i.

{ is termed the damping factor.

The value of s obtained from the above equation depends very much
on the value of the square root term. Thus when £ is greater than 1 the
square root term gives a square root of a positive number, and when [ is less
than 1 we have the square root of a negative number. The damping factor
determines whether the square root term is a positive or negative number
and so the form of the output from the system.

§ =

1 Over-damped ) SN

With £ > 1 there are two different real roots s, and 5,:

Sll:’ _gwn + w, §2 -1

- 2

= —gwn - w, ( =1

and so the general solution for x, is
Xy = Ae" + Bev

‘TPor such conditions the system is said to be over-damped.

2 Critically damped

When ¢ = 1 there are two equal roots with s, =5, = —w,. For this
condition, which is called critically damped,
Xy = (AL + B) e

"It may scem that the solution for this case should be a, = Ae®, but two
constants are required and so the solution is of this form. S8
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19.4 SECOND-ORDER SYSTEMS
Figure 19.9 E(fcct of damping No
i ; damping
with a second-order system. ¥ 4\
Intput, Spring- Output, n \ | High
Step d“s';;::::"m ! ' | damping
input 7 »
2 Lo biame
\
¥ b
¢ A 0 Some
damping
—_— -
1] ! Timce
19.4.1 Natural response bt 168

Consider a mass on the end of a spring. In the absence of any damping and
left to oscillate freely without being forced, the output of the second-order
system is a continuous oscillation (simple harmonic motion). Thus, suppose
we describe this oscillation by the equation

x = A sinwy/

“where x is the displacement at a time ¢, .4 the amplitude of the oscillation and
w, the angular frequency of the free undamped oscillations. Differentiating
this gives -

dyv

7 = w,A cos w,!
C

Differentiating a second time gives

diy — .
~7 = TwyAsinw = ~wix
dr
This can be reorganised to give the differential equation
dir )
T + wpr =0

But for a mass m on a spring of stiffness & we have a restoring force of £vand thus -

ar

This can be written as

£li‘.‘.+£q——() . N yeral
a " omt o

‘Thus, comparing the two differential equations, we must have

m

and'x' =/ sin @, is the solution to the differential equation.
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L R
Step
input =
,/
%

Figure 19.10 RLC system.

then we must have

:
doyy dy, ,
m— +c——+ ky;=F
dr d
The previous section gave the solutions for the natural part of the
solution. T'o solve the forcing equation,
2
dex dx; .
m—r 4 c— + kg = [
drr d
we need to consider a particular form of input signal and then try a
solution. Thus for a step input of size F at time ¢ = () we can try a solution
x; = A, where A is a constant (see Section 19.3.2 on first-order differential
equations for a discussion of the choice of solutions). Then dx;/d¢ = 0 and
d’x./di* = 0. Thus, when these are substituted in the differential equation,
0+ 0+ k4=Fandso A= F/kand x; = F/k. The complete solution,
the sum of natural and forced solutions, is thus for the over-damped system

‘

F
r = Ae" + Be¥ + n

for the critically damped system

F
x= (At + B)e ™™ + n

and for the under-damped system

. F
x=c “(Pcoswt + Qsinwt) + r

When ¢ — % the above three equations all lead to the solution x = F/k.
This is the steady-state condition.
Thus a second-order differential equation in the form
die dv 7
- + ay —— + gV = b(]]/ T

e 70 d

has a natural frequency given by

1
2 =

w
[15)

and a damping factor given by

2
a

£ =

» 4(12([“

| 19.4.3 Examples of second-order systems

"The following examples illustrate the points made above.

Consider a series RLC circuit (Figure 19.10) with R = 100 (), L = 2.0 H
and C = 20 uF". When there is a step input I, the current 7 m the circuit is
given by (sce the text associared with Figure 17.9)

d4 R di 1 2

L e T Ie
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3 Under-damped il
With ¢ < 1 there are two complex roots since the roots both involve the

square root of (—1):

s= —~{w, * w,V-1=~{w, £ 0,V y
and so writing j for V — 1,
§ = "‘{(l)" R jwn V1= {2
If we let
w=0oV1-{
then we can write s = —{w, * jo and sg the two roots are / {1
1= —f{wg +jwands, = —{wy — jw

The term w is the angular frequency- of the motion when it is in the
damped condition specified by {. The solution under these conditions is
thus

o ¥, = “Ic(_[(u,pf-j(u)/ + b)c(—{w"—-iw)l — e—{aJ,,l(Aeiwl 4 Be-—iw!)
But._c“'” = coswt + jsinwtand ¢ 7" = cos wt — j sin wt. Hence
x, = e (A cos wr + jAsin wt + B cos wt — jB sin wt)

= ¢ (A4 + B) coswt + j(A4 — B) sin wt)]
If we substitute constants P and Q for (4 + B) and j(4 — B), then

X, = e (P eoswr + Qsinwi)

n

Forsuch conditions the system is said to be under-damped.

19.4._2 Response with a forcing inpyt

When we have a forcing input F the differential equation becomes

2, .
i c(—li-#h =F iR - amin
dr de , . S FC S
We can solve this second-order differential equation by the same method used
carlier for the first-order differential equation and consider the solution to be
made up of two elements, a transient (natural) usponse and a forced response,
i.e.x = x, + ;. Substituting for v in the 1bovc Lquanun then gives

d*(x, + ) d(x, + xp)

m - + ¢ — + k(x, + x).= F
dr dt -

If we let

m—~+¢——+,( =0
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and so

subsidence ratio =

second overshoot ( =2 )
- = ex
first overshoot

Vi1 -

The settling time 4, is used as a measure of the time taken for the
oscillations to die away. It is the time taken for the response to fall within and
remain within some specified percentage, e.g. 2%, of the steady-state value
(see Figure 19.12). This means that the amplitude of the oscillation should
be less than 2% of xgq. We have

r=e ' (Pcoswt + QO sin wt) + steady-state value

and, as derived carlier, P = —xgs. The '\mplitudc of the oscillation is
(\ — rgg) when x is a maximum value. The maximum values occur when w!?
is some multiple of 77 and thus we have cos w¢ = 1 and sin wt = (). For the
2% settling time, the settling time ¢, is when the maximum amplitude is 2%
of xgg, 1.e. 0.02xgs. Thus

0.02.1'55 = _'zw"l"(.\'ss X1+ 0)

"Taking logarithms gives In 0.02 = —{w,t, and since In 0.02 = —3.9 or
approximately —4, then
4
1, =——
" o, )
The above is the value of the settling time if the specified percentage is 2%.
If the percentage is 5% the equation becomes

3
.= —

S
{w, .
Since the time taken to complete one cycle, i.e. the periodic time, is 1/
where fis the frequency, and since @ = 27, then the time to complete one
cycle is 277 /f. In a settling time of 7, the number of oscillations that occur is

: . settling time
number of oscillations = ——

periodic time _
"md thus for a settling time defined for 2% of the steady—stﬂu value, = "
4/{w,

" number of oscillations =
m/w

Since w = gu,,\/(l — ¢%), then

i Y ~ . . 2'("',n Vv ] - {2 . 2' 1 Y oor
_—.number of oscillations = ———— = — E = 1

To illustrate the above, consider a second orde1 system which has a

natural anguh\/nquenu of 2.0 Hz and a dampcd frequency of 1.8 Hz.
blllng = (1 = ¢%), then the damping f1(.t01 is glvcn bv =

1R =20V1 = 2 ' i

and { = 0.44. Since wt, = 7, then the 100% rise time is given by
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If we compare the equation with the general second-order differential
cquation of

d’y dv

)y === f ay

di dt

Foagye = by
then the natural angular frequency is given by
; ] 1

Wy = = B oesmccmuan

LC 20X20%10°°

and so w, = 158 Hz. Comparison with the general second-order equation
also gives

(R/L)'  RC100* X 20 X 10°*

CAX (L0~ 4L - 4x20.

Thus ¢ = 0.16. Since ¢ is less than 1 the system is under-damped. The
damped oscillation frequency w is

w=w0,V1-=158V1 - 0.16 = 156 Hz

Because the system is under-damped the solution will be of the same form as

i r
x.= ¢ (P cos wr + Osinwt) + I -

>

and so
= e MNP eos 156: + Qsin 1561) + I/
Since = 0 when 1 = 0, then 0 = [(P+ 0) + V. Thus P = — V. Since

di/dt = 0 when 1 = 0, then differentiating the above equation and equating
it to zero gives
di “tugi s .
— = e (0P sin wi — w0 cos wt) — {w, e (P cos wt + 0 cos wi)

de
Thus 0= 1(0 = ©Q) — {w,(P + 0) and so

Lo, P {wV 0.16 X 158V - - =
= = & = —— = =016V
Q w w 156

'lr'hu.‘s;rhc S()ll‘J‘li()n of the differential equation is - . ~ .
i == Ve B (cos 1561 + 0.16 sin 156¢)

Now consider the system shown in Figure 19.11. The input, a torque 7,
is applicd to a disc with a moment of inertia 7 about the axis of the shaft. The
shaft is free to rotate at the disc end but is fixed at its far end. The shaft rotation °

Opposing v g
torsional Torque  is opposed by the torsional stiffness of the shaft, an opposing torque of &6,
torque / occurring for an input rotation of @,. £ is a constant. Frictional forces damp

the rotation of the shaft and provide an opposing torque of ¢ df, /dt, where ¢ is
a constant. Suppose we need to determine the condition for this system to be
critically damped. '

We first need to obtain the differential equation for the system. The net

Opposing Moment of torque 15
frictional torque inertia / ’ 10
. A R) . Ll 7 L
Figure 19.11 T'orsional system., : net torque = 7' = ¢—— — kf,

ds
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20.2.2 Examples of first-order systems

"T'he follpwing examples illustrate the above points in the consideration of the

transfer function of a first-order system and its behaviour when subject to a

step input.

1 Consider a circuit which has a resistance R in series with a capacitance
C. The input to the circuit is v and the output is the potential difference
v across the capacitor. The differential equation relating the input and
output 1s

dvg
dr

Determine the transfer function.
Taking the Laplace transform, with all initial conditions zero, then

v = RC + ve

V(s) = RCsV:(s) + Ve(s)
Hence the transfer function is
Vils) 1
P(s)  RCs + 1
2 Consider a thermocouple which has a transfer function linking its voltage
output V and temperature input of

30 x 107°
G(s) =——V/°C
)= v
Determine the response of the system when subject to a step input of size
100°C and hence the time taken to reach 95% of the steady-state value.
Since the transform of the output is equal to the product of the transfer
function and the transform of the input, then

V(s) = G(s) X input(s)

A step input of size 100°C, i.e. the temperature of the thermocouple is
abruptly increased by 100°C, is 100/s . Thus

S0 30X 107 100 30 x 1071
V(.\') - X — sele oy o -

G(s) =

105 + 1 s 10s(s + 0.1)
. 0.1
=30 X 10—
s(s + 0.1)

The fraction clement is of the form a/s(s + «) and so the inverse
transform is

V=30x1071 xe M)V

The final value, i.c. the steady-state value, is when ¢ — e and so is when
the exponential term is zero. The final value is therefore 30 X 1074V,
"Thus thé time taken to reach, say, 95% of this is given by

.. 0.95 X 30 x 10* =30 X 107*(1 X e” V) .
Tliu‘s” 0.05:= ¢ ""and In 0.05 = —0.1¢. The time is thus 30s.
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19.6 SYSTEM IDENTIFICATION

‘The percentage overshoot is given by

: - LT
percentage overshoot = cxp( X 100%

V1=

cxp( s 4 ) X 100%

V1= 044

The percentage overshoot is thus 21%. The 2% settling time is given by

4 4
lw, 0.44X20

In Chapters 17 and 18 models were devised for systems by considering them
to be made up of simple elements. An alternative way of developing a model
for a real system'is to use tests to determine its response to some input, e.g.
a step input, and then find the model that fits the response. This process
of determining a mathematical model is known as system identification.
Thus if we obtain a response to a step input of the form shown in Figure 19.5
then we might assume that it is a first-order system and determine the time
constant from the response curve. For example, suppose the response takes a
time of 1.5 s to reach 0.63 of its final height and the final height of the signal
is five times the size of the step input. Table 19.1 indicates a time constant of
1.5 s and so the differential equation describing the model is

=455

i, =

System
identification

Ls dw " .
1.5=—+ x =5y
de
An under-damped sccond-order system will give a response to a
step input of the form shown in Figure 19.12. The damping ratio can be
determined from measurements of the first and second overshoots with the
' ratio of these overshoots, i.e. the subsidence ratio, giving the damping ratio.
The natural frequency can be determined from the time between successive
overshoots. We can then use these values to determine the constants in the
second-order differential equation.

Summary 1400 o i en

The natural response of a system is when there is no input to the system
forcing the variable to change but it is just changing naturally. "The forced
response of asystem is when there is an input to the system forcing it to change.

A first-order system with no forcing input has a differental equation of
the form r

X
ay = + agv = ()
1 d/ ()

and this has the solution x = ¢~/
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2 Determine the magnitude and phase of the output from a system when
subject toa simusoidal input of 2 sin( 37 + 60°?) if it has a transfer function of

+

|

(1‘(.\}

The trequency-response function is obtained by replacing s by jw. Thus
. 4
(:‘(](r)! .
1) |
Multplying the top and hottom of the equation by (=jw + 1),
“He -4+ 4 . 4w
R I

Gjw) =

The magnitude is thus

-+

. = e W 4 Yo!
lG(lw)! = \/.\‘- +.)’Z - \/(wl + l)l + (wz 4 1)2 - »

and the phm angle is given by tan ¢ = y/x and so

~
-
—

~ tan d) = -w o
For lhe specified input we have @ = 3 rad/s. The magmtude is thus
; 4
G(jw)l = ———= =13
V3 +1

and the phasc is given by tan ¢ = —3. Thus ¢ = —72°. This is the
phase angle between the input and the output. Thus the output is
2.6 sin(3r — 12°).

21.3.2 Frequency response for a second-order system

Consider a second-order system with the transfer function (see Section 20.3)
2

W

+ 2w,s + w?

where w,, is the natural dngular frequency and § the dampmg ratio. Tl"(.
fr(.qucncy response function is obtained by replacing s by jw. I‘hus o

G(-\) T .;_r

i) w; w;
) w) = = ) 5
’ ~w? + 20w, + wﬁ (w, — ®?) + 12w,
1

.1 )
w \° . w
ERIETE
w, w,
Multiplying the top and bottom of the expression by

b-(2)]-m(2)



